Strategies for improved interpretation of computer-aided detections for CT colonography utilizing distributed human intelligence

Matthew T. McKenna, Shijun Wang, Tan B. Nguyen, Joseph E. Burns, Nicholas Petrick, Ronald M. Summers

Abstract

Computer-aided detection (CAD) systems have been shown to improve the diagnostic performance of CT colonography (CTC) in the detection of premalignant colorectal polyps. Despite the improvement, the overall system is not optimal. CAD annotations on true lesions are incorrectly dismissed, and false positives are misinterpreted as true polyps. Here, we conduct an observer performance study utilizing distributed human intelligence in the form of anonymous knowledge workers (KWs) to investigate human performance in classifying polyp candidates under different presentation strategies. We evaluated 600 polyp candidates from 50 patients, each case having at least one polyp ≥6 mm, from a large database of CTC studies. Each polyp candidate was labeled independently as a true or false polyp by 20 KWs and an expert radiologist. We asked each labeler to determine whether the candidate was a true polyp after looking at a single 3D-rendered image of the candidate and after watching a video fly-around of the candidate. We found that distributed human intelligence improved significantly when presented with the additional information in the video fly-around. We noted that performance degraded with increasing interpretation time and increasing difficulty, but distributed human intelligence performed better than our CAD classifier for "easy" and "moderate" polyp candidates. Further, we observed numerous parallels between the expert radiologist and the KWS. Both showed similar improvement in classification moving from single-image to video interpretation. Additionally, difficulty estimates obtained from the KWS using an expectation maximization algorithm correlated well with the difficulty rating assigned by the expert radiologist. Our results suggest that distributed human intelligence is a powerful tool that will aid in the development of CAD for CTC.

1. Introduction

Colorectal cancer is the second-leading cause of cancer death in Americans (Jemal et al., 2010). Colorectal cancer is a largely preventable disease as the removal of colorectal polyps, the precursor to malignancy, is known to be curative in most patients. Tests that are effective at detection of colorectal polyps include colonoscopy and CT colonography (Smith et al., 2010). Both colonoscopy and CT colonography (CTC) are tests that are performed and interpreted by trained physicians. In the past few years, computer-aided polyp detection (CAD) software has been developed and shown to improve the diagnostic performance of CT colonography when interpreted by radiologists (Li et al., 2009; Nappi and Yoshida, 2009; Summers et al., 2005; Suzuki et al., 2010; Wang et al., 2010; Zhu et al., 2010).

While CAD systems often improve the sensitivity of radiologists, this benefit is coupled with a drop in specificity (Dachman et al., 2010). Conversely, CAD markings on true polyps have been incorrectly dismissed as false positives by interpreting radiologists (Taylor et al., 2009). In clinical trials investigating CAD for CTC, wide ranges of sensitivities and high intra- and interobserver variability have been noted (Cotton et al., 2004; Johnson, 2008; Johnson et al., 2003; Petrick et al., 2008; Pickhardt et al., 2003; Rockey et al., 2005). It is of interest to understand the factors that lead to incorrect diagnosis at CTC by radiologists and by CAD. Methods to investigate training and interpretation techniques and to quantitatively evaluate various datasets also would be desirable.
Such understanding could lead to higher, more consistent performance in CTC.

Distributed human intelligence, a form of web-based crowdsourcing, utilizes large numbers of lay people (referred to as “knowledge workers”) to complete various tasks requiring human intelligence. It is a relatively new phenomenon, but it has already been applied with great success in various areas of scientific research. An example is FoldIt, a software application structured in the form of an online game that lets users manipulate 3D protein models, trying to find the correct conformations (Cooper et al., 2010). The knowledge gained through this Internet game has led to improved algorithms to predict 3D protein structures from nucleotide sequences. Research into RNA folding and multiple sequence alignment in DNA also have been crowdsourced in the form of web-based games (http://eterna.cmu.edu/content/EteRNA) and Phylot (http://phylo.cs.mcgill.ca/). Crowdsourcing has expedited the annotation of datasets, which had been a major bottleneck in machine learning research. The ESP Game and reCAPTCHA system are used to collect annotations on image and text databases (von Ahn and Dabbish, 2004; von Ahn et al., 2008). In research to evaluate the validity of crowdsourced data, investigators have developed techniques to evaluate individual annotators and ensure data is comparable to that generated by experts (Ipeirotis et al., 2010; Raykar et al., 2010; Snow et al., 2008; Whitehill et al., 2009). Crowdsourcing can offer an efficient and reliable means to collect data, evaluate algorithm performance, and gain insight into human decision-making in a number of different areas of research.

We realize that largecohorts of experts are difficult and expensive to acquire; however, the utility of a system is measured by observers. The requirement for informed consent was waived.

2.1. Case selection

We selected two independent sets of 50 patients each from a database of patients from three medical centers originally accrued during the study described by Pickhardt et al. (2003). The first of these sets served as training data to optimize parameters in our CAD system. The second set was used as test data to present to the KWs. We included all patients from our original study (Nguyen et al., 2012) in the test set. We supplemented this set with patients selected sequentially from each medical center. We required that each patient had at least one polyp ≥ 6 mm confirmed by histopathological evaluation following optical colonoscopy, and we rejected patients with poor preparation (i.e. poor insufflation) that prevented creation of videos as described in 2.7. Patient characteristics are shown in Table 1.

2.2. Bowel preparation and CT scanning

Patients underwent a standard 24-h colonic preparation (Pickhardt and Choi, 2003). Each patient was scanned in the supine and prone positions during a single breath hold using a 4-channel or 8-channel CT scanner (General Electric LightSpeed or LightSpeed Ultra, GE Healthcare Technologies, Waukesha, WI) during a single imaging appointment. CT scanning parameters included 1.25- to 2.5-mm section collimation, 15 mm/s table speed, 1-mm reconstruction interval, 100 mAs, and 120 kVp.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Experimental set</th>
<th>Training set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age ± SD (range)</td>
<td>59 ± 8.2 (47–77)</td>
<td>59 ± 8.2 (47–77)</td>
</tr>
<tr>
<td>Mean age ± SD (range)</td>
<td>60 ± 5.6 (51–73)</td>
<td>59 ± 8.2 (47–77)</td>
</tr>
<tr>
<td>Polyp size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–9 mm</td>
<td>43 (73%)</td>
<td>38 (72%)</td>
</tr>
<tr>
<td>> 10 mm</td>
<td>16 (27%)</td>
<td>15 (28%)</td>
</tr>
<tr>
<td>Polyp histopathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperplastic</td>
<td>17 (29%)</td>
<td>9 (17%)</td>
</tr>
<tr>
<td>Tubular adenomatous</td>
<td>27 (54%)</td>
<td>34 (64%)</td>
</tr>
<tr>
<td>Tubulovillous adenomatous</td>
<td>7 (12%)</td>
<td>7 (13%)</td>
</tr>
<tr>
<td>Other benign</td>
<td>8 (14%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Polyp shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sessile</td>
<td>40 (68%)</td>
<td>39 (74%)</td>
</tr>
<tr>
<td>Pedunculated</td>
<td>12 (20%)</td>
<td>10 (19%)</td>
</tr>
<tr>
<td>Flat</td>
<td>6 (10%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Polyp location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>10 (17%)</td>
<td>8 (15%)</td>
</tr>
<tr>
<td>Sigmoid colon</td>
<td>15 (25%)</td>
<td>14 (26%)</td>
</tr>
<tr>
<td>Descending colon</td>
<td>7 (12%)</td>
<td>6 (11%)</td>
</tr>
<tr>
<td>Splenic flexure</td>
<td>2 (3%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Transverse colon</td>
<td>6 (10%)</td>
<td>7 (13%)</td>
</tr>
<tr>
<td>Hepatic flexure</td>
<td>2 (3%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Ascending colon</td>
<td>12 (20%)</td>
<td>12 (23%)</td>
</tr>
<tr>
<td>Cecum</td>
<td>5 (8%)</td>
<td>4 (8%)</td>
</tr>
</tbody>
</table>
2.3. Computer-aided polyp detection algorithm

CT images were analyzed using our computer-aided polyp detection software package described previously (Li et al., 2009). A support vector machine (SVM) committee classifier was trained on 5337 detections identified in the independent training set of 50 cases, for an average of 107 detections per patient. As each patient was scanned in both supine and prone positions (thus there were two CT scans per patient in the CAD data set), 53 of the 67 polyps in the training cases resulted in 91 of these detections. At the operating point corresponding to 10 false positives per patient, the classifier achieved a sensitivity of 0.86 with a specificity of 0.90 in the training set. When applied to the test set, the trained SVM classifier assigned a score to each detection, ranging from 0 to 1. Higher scores represent higher confidence that the detection is a true polyp. Characteristics of the polyps in our training data are shown in Table 1.

2.4. Experimental dataset selection

We applied our trained CAD system to our test set. The CAD system initially identified 4866 detections in the 100 testing set CT scans, for an average of 49 detections per scan (97 detections per patient). The system detected 65 of the 75 polyps confirmed by optical colonoscopy in this 50 patient data set. Of the 4866 detections, 112 were on the 65 true polyps distributed as follows. Forty-three of the polyps were detected once each on both the prone and supine scans, 11 were detected once on only the prone scan, nine were detected once on only the supine scan, one polyp was detected twice on the prone scan and once on the supine, and one polyp was detected twice on the supine scan and once on the prone. To reduce this initial set of detections to a manageable data set we could distribute to KWs, we used free-response operating characteristic analysis. We selected an operating point corresponding to 10 false positive detections per patient while maintaining a sensitivity of 0.741. We only used the 600 detections exceeding the SVM score threshold (≥0.5714) corresponding to our operating point. Of these 600 detections, 88 represented confirmed true polyps distributed as follows. Twenty-seven polyps were detected on both scans, 17 were detected on only the supine scan, 14 were detected on only the prone scan, and one polyp was detected twice on the supine scan and once on the prone. Characteristics of the polyps in our experimental set are shown in Table 1.

An expert radiologist categorized each detection based on its structure and labeled each detection as “easy”, “moderate”, or “difficult” based on perceived difficulty for a reader to correctly identify the detection as a true polyp or false positive. “Easy” detections were those whose categorizations as true or false positives were immediately obvious at a glance with limited training. “Difficult” detections were those whose categorizations were not immediately obvious and might require additional knowledge or information, or those that looked like an obvious polyp but were not polyps based on the reference standard. “Moderate” detections were those of intermediate difficulty.

2.5. Distributed human intelligence

In this study, we employed Amazon’s Mechanical Turk (MTurk) (https://www.mturk.com; Amazon.com, Inc.) web service to recruit initially untrained, anonymous workers to perform polyp classification on our dataset. MTurk is an Internet-based crowdsourcing platform that allows requesters to distribute small computer-based tasks to a large number of knowledge workers (KWs). KWs receive a small monetary reward from the requester for each human intelligence task (HIT) that they complete. Requesters also can reward high-performing KWs with additional monetary bonuses.

We generated and published one HIT on the MTurk platform for each CAD polyp candidate and asked 20 KWs to complete each HIT. By combining the results from multiple KWs who each worked on a different set of polyp candidates, we created a system of distributed human intelligence that reflected the KW’s collective judgment. An expert radiologist also completed each HIT. Our aim in this study was to improve the performance of KWs from our original experiment. We tried to accomplish this in multiple ways: (1) utilizing a new rendering scheme for the creation of images, (2) presenting the KWs with multiple perspectives on each detection in the form of a video, (3) implementing a new training module to better explain the task, (4) utilizing a qualification test to stratify and select KWs, and (5) offering a monetary reward for good performance.

2.6. Rendering function

Volumetric ray-casting with perspective projection was used with a segmented, but uncleaned, CTC dataset to generate the images (Yao et al., 2004). A two dimensional opacity transfer function was created for each polyp candidate, which varied with local CT intensity values and gradient measures. This transfer function was subject to three design constraints: soft tissue (the colon wall and polyps) should be opaque, oral contrast in the colon lumen should be transparent, and high gradients at air–fluid interfaces should be semi-transparent.

We found that fluid artifacts and improper subtraction were a significant source of incorrect votes by the KWs in our initial experiments. Thus, we decided to create renderings using uncleansed datasets, to alert the KWs to the potential of subtraction artifacts. When the polyp candidate was located near contrast, the contrast was rendered transparent as it could affect proper interpretation of the detection. Otherwise, the contrast was rendered opaque. Such an approach seeks to illustrate improperly-segmented contrast and avoid the creation of polyp-like structures arising from poor segmentation (see Fig. 4 for some examples of contrast artifacts). A color transfer function was set in conjunction with the opacity transfer function to illustrate the difference between tissue and contrast. Contrast was rendered white, matching its appearance in the 2D CT scan slices. Tissue was rendered a red color. A similar approach where tagged stool was color-coded and presented during interpretation was shown to increase efficiency of CTC reading while maintaining diagnostic accuracy (Park et al., 2008). The gradient measure was implemented to avoid volume averaging effects at air–fluid interfaces which result in a thin film with intensities comparable to tissue. The rendering pipeline was implemented with the Visualization Toolkit in Java using MATLAB (Version 7.10.0 (R2010a), MathWorks) (Schroeder et al., 2003). The rendering functions were inspired by those used in (Zhu et al., 2010).

2.7. Viewpoint generation and ranking

We used the colon segmentation result to generate multiple viewpoints for each polyp candidate. To generate the viewpoints, we first aligned a sampled hemisphere (81 points) with the measured surface normal of the polyp candidate. Using each point on the hemisphere to define a direction, a camera was iteratively moved in each direction starting at the polyp candidate centroid. The camera movement was stopped when it either hit tissue or exceeded a maximum distance from the centroid. A 2D illustration of this process is shown in Fig. 1. Generating viewpoints in this way would ensure visibility of the centroid, and greater distances
would allow us to display contextual information which could be of diagnostic importance.

We ranked each viewpoint to guide the creation of the video sequence. We iteratively populated a ranking list, initially using three criteria to judge the viewpoints: alignment with the principal components of the polyp candidate, distance from centroid, and alignment with the fluid normal. As the ranked list became populated we penalized subsequent viewpoints for sharing a similar alignment with a previously-selected viewpoint. In our observations, these criteria produced a range of informative viewpoints.

The three principal components of the polyp candidate were extracted from the 3D arrangement of the voxels marked as part of the detection using principal component analysis. Assuming viewpoints on the same side as the polyp candidate normal are more informative, the principal component vectors were aligned with the normal such that the scalar product of each vector with the normal was positive. We also assumed viewpoints situated at 45° with respect to each principal component would be informative. Such viewpoints were chosen to illustrate the shape of the detection.

A distance score which increased with distance from the detection centroid was assigned to ensure the polyp candidate was not distorted in creating the image. Since we used perspective projection to generate the 2D images, a viewpoint very close to the polyp candidate could distort the candidate. Farther viewpoints also allow for capture of structures of possible diagnostic significance surrounding the detection.

Alignment with the fluid normal was considered to account for the presence of contrast in the images. Volume averaging effects at air–fluid interfaces resulted in a thin film with intensities comparable to tissue. While the gradient component of the transfer function was designed to render the film transparent, a viewpoint that runs parallel to such a surface would produce an occluded image of the polyp candidate. Rendering performance improves as the viewpoint is increasingly orthogonal to the fluid's surface. Viewpoints that penetrate this air–fluid interface were assigned scores based on their alignment with the surface normal of the fluid.

To ensure different viewpoints were selected, a given viewpoint was penalized for having a similar alignment with previously selected viewpoints. Viewpoints that shared a similar viewing angle to a previously-selected viewpoint were given low scores.

2.8. Video creation

Assuming that the attention span of the KWs would be limited, these ranked viewpoints had to be combined to efficiently illustrate the polyp candidate. We wanted to ensure that the higher-ranked viewpoints would be seen earlier in the video while still visiting as many predefined viewpoints as possible. Since the viewpoint selection process did not explicitly consider image properties, it was important to visit the lower-ranked viewpoints as these could be diagnosis significant. Colonic structures surrounding the polyp candidate also had to be avoided in generating the final camera path as passing through such structures would create occluded images. We utilized an undirected graph to solve this problem.

Each camera position was entered as a node on the graph, and pairwise linear connections were made between each camera position. The edges of the graph were set by the linear distance measure between each camera. These edges were weighted by a distance rank. For example, the closest viewpoint's edge would be multiplied by 1, the next closest viewpoint's edge would be multiplied by 2, etc. If no linear connection could be made, e.g. tissue was present between the two camera positions, no edge was constructed. After visiting a node, the value of each of its edges was increased to discourage revisiting the node. To define the sequence of camera positions, we used iterative runs of Dijkstra’s Algorithm to find the lowest-cost path connecting the two highest-ranked, unvisited camera positions (Dijkstra, 1959). By defining the graph in this way, the search was encouraged to proceed to closer neighbors instead of taking a direct route to the next highest-ranked position. A direct route would have been the lowest-cost path had we not modulated the distance by the distance rank. This approach increased the number of positions reached while still visiting the higher-ranked viewpoints and avoided colonic structures. The sequenced viewpoints were linearly interpolated to construct a final, smooth camera path around the polyp candidate.

When generating the video, the camera was focused on the polyp candidate centroid and was aligned with the surface normal of the polyp candidate. This ensured a smooth transition between frames in the video. The viewing angle of the camera was set to ensure the entire polyp candidate would be visible. The detection’s voxels were first projected onto the plane running through the detection centroid and orthogonal to the viewing direction. The distance from the centroid to each projected point was measured, and the maximum distance, \(R \), was recorded. The viewing angle set using the geometric relationship between the camera’s distance from the detection centroid and \(R \). The viewing angle was constrained between 70° and 120°. These bounds were selected to allow surrounding structure to be seen while avoiding severe distortion of the polyp candidate in the images. The detection was marked by a green cube, and the video was generated at eight frames per second. The final videos were each 1-min, volume-rendered, intraluminal fly-grounds of the polyp candidate.

2.9. Single image creation

We had to generate a single image of each candidate to measure the difference between single image and video interpretation. The single image was created in the same way as the video using the top-ranked viewpoint from the video generation process.

2.10. Qualification test and training module

Before working on our HITs, KWs were directed to a training site and asked to complete a qualification test. The training site contained information about colonic polyps and outlined an approach for completing the HITs. We asked the KWs first to examine the 2D CT scan sections to identify the primary material present in the detection and then to use the 3D reconstructions to evaluate the shape of the detection. The training page also included six examples of polyps and six examples of common false positives. Each example was illustrated with 2D CT scan sections and a 3D rendering, and the corresponding video was shown when the rendering was clicked. We provided a caption for each example to highlight
important aspects of the images. The examples were selected to familiarize the KWs with the rendered images and to address common structures seen in CTC as noted from our original experiment. This site contained more information than the training module used in the first experiment. The original training module used the same description of a polyp and showed examples of five true polyps and six false positives. Each example was illustrated with 2D CT scan sections and a volume rendering. Notably, the original training did not contain explicit instructions on how to interpret the images. Further, the examples in the original training were not captioned, only labeled with the ground truth information (true/false positive). Those examples also did not contain video.

The qualification test consisted of five questions. Each question showed a multi-perspective video and the axial, coronal, and sagittal CT scan sections of a detection from the training set. The KWs were asked to determine whether the images show a polyp. The detections in the test were similar to examples seen in the training, and 4 of the 5 questions were deemed “easy” by an expert radiologist. Two questions showed true polyps, and 3 showed common false positives. The KWs were required to correctly answer at least 4 of 5 to work on the HITs. The KWs were also expected to have an approval rating of >95% on the MTurk platform to participate in this study. A KW’s approval rating is defined as the ratio of assignments approved by MTurk requesters to the total number of assignments submitted by a KW, and it is part of each KW’s MTurk profile. These steps were taken to ensure the KWs were reliable and had a basic understanding of the task, and to eliminate the KWs who only voted “yes” in the first experiment.

To further encourage KWs to submit high-quality results, we offered a $5 USD bonus to be paid to the top 10 workers upon completion of the experiment. We defined “best workers” as those who had the highest average sensitivity and specificity across the single image and video interpretation (Score = (SeS + SpS + SeV + SpV)/4, where SeS and SeV are the fractions of true positive marks correctly classified using the single image and video respectively and SpS and SpV are the fractions of false positive marks correctly classified using the single image and video respectively). KWs had to complete more than 100 HITs to be considered for the reward. We informed the KWs of the bonus in the instructions to the qualification test: “As a special reward, the 10 best workers will each receive a $5 bonus for their work.” We did not reveal the specific ranking system to the KWs.

2.11. HIT design

For each HIT, the KWs were asked to answer three questions. First, they were asked to examine three two-dimensional CT scan sections running through the detection from axial, sagittal, and coronal views. They had to identify whether the detection marked “Air”, “Tissue”, or “Fluid”. After answering, the single image of the polyp candidate was revealed. The KWs were asked to decide whether the image showed a polyp. Finally, the KWs were shown the video fly-around of the detection. KWs were required to watch at least 5 s of the video before answering whether the video showed a polyp. To account for the variable Internet bandwidth of KWs, we included a script in the HIT to start the video timer only when the video had finished buffering and had started to play. In this way, the KWs would have a smooth viewing experience, and we could remove some of the variability of KW bandwidth. We were not concerned about the bandwidth issue for the single image.
interpretations as those files were relatively small (around 65KB each for volume-rendered images and 8KB each for the CT scan sections). We recorded the decision times for each of these questions. KWs were blinded to the proportion of polyp candidates that were true positives and true negatives in the dataset. Each worker was given 20 min to complete the assignment and was paid $0.01 USD upon completion. This design to measure the difference between single image and video interpretation could be implemented on the MTurk platform and allowed for an efficient testing without bias of the difference (Obuchowski et al., 2010). A sample HIT can be seen in Fig. 2.

2.12. Statistical analysis

The primary objective was to compare the KW’s area under the receiver operating characteristic (ROC) curve (AUC) using single images and using videos. The unit of analysis for constructing the ROC curves was the CAD polyp candidates, or detections. Sensitivity was defined as the fraction of true polyps correctly classified. Specificity was defined as the fraction of false positives correctly classified. Polyp classification for CAD was based on the SVM score using the model proposed in (Whitehill et al., 2009). This model uses an expectation maximization algorithm to estimate ground truth labels from the binary labels assigned by KWS while accounting for worker quality and detection difficulty:

\[p(L_q = Z_j | x_i, \beta_j) = \frac{1}{1 + e^{-\beta_j x_i}} \]

where \(L_q \) is the label assigned to image \(j \) by KW \(i \), \(Z_j \) is the true label, \(x_i \) represents the expertise of KW \(i \), \(\beta_j \) represents the difficulty of image \(j \), and \(p \) is the probability that the label \(L_q \) matches the true label \(Z_j \) if \(x_i \in (-\infty, \infty) \), where \(x = \infty \) means the KW always labels the image correctly, and \(x = -\infty \) means the KW is adversarial and always labels the image incorrectly. \(\beta \) is constrained to be positive, and \(1/\beta \) represents image difficulty. \(1/\beta \in [0, \infty) \) where if \(1/\beta = 0 \) means the image is so easy every KW will assign the correct label, and \(1/\beta = \infty \) means the image is so difficult that even the best KW will have only a 50% chance of assigning the correct label. We defined the learned difficulty for each detection as the average of the difficulties calculated using the single-image and video results. We stratified the model predictions, \(p \), by the difficulty assigned by an expert radiologist and compared the distributions using multi-variate ANOVA.

All data collection and analyses were performed with Amazon’s MTurk web interface, Microsoft Office Excel, MATLAB, and ROCKIT. Numbers are reported as values ± standard error unless otherwise specified.

3. Results

3.1. Experimental characteristics

This experiment consisted of 600 HITs each completed by 20 KWS, for a total of 12,000 HIT results. These HITs were published on MTurk April 20, 2011, and the experiment concluded July 5, 2011. The distribution of detections by difficulties and detection categories can be seen in Fig. 3. Some example detections are shown in Figs. 4 and 5.

3.2. Performance comparison

The detection-level AUCs and detectability indices, \(d_{z} \), for KWS using single images and KWS using videos are shown in Table 2 with the corresponding ROC curves in Fig. 6. The video AUC was significantly greater than the single image AUC, and we saw a 14% improvement in \(d_{z} \) when moving from single image to video interpretation. The radiologist saw a large improvement in sensitivity with a small improvement in specificity when moving from the single image to the video.
3.3. Knowledge worker characteristics

Four hundred and fourteen KWs attempted the qualification test. Of those, 256 passed and 158 failed. One hundred and twenty-nine KWs scored a 5/5 on the test, 127 scored a 4/5, 76 scored a 3/5, 51 scored a 2/5, 17 scored a 1/5, and 14 KWs did not answer any questions correctly. Of the KWs who passed the qualification test, only 160 submitted HITs. Each knowledge worker completed, on average, 75 (±158) assignments. The average amount of time spent on each assignment was 51 (±71) s. Twenty-nine KWs completed more than 100 HITs, accounting for 86% of all completed assignments. The remaining 131 KWs completed only 14% of all completed assignments.

We show performance statistics for KWs grouped by qualification score in Tables 2 and 3 with corresponding ROC curves in Fig. 7. Sixty-seven KWs who scored a 4 on the qualification test (“four-workers”) completed 5940 assignments, for an average of 89 (±175) assignments per worker. Ninety-three KWs who scored a 5 on the qualification test (“five-workers”) completed 6060 assignments, for an average of 65 (±145) assignments per worker. Five-workers outperformed four-workers on both single-image ($p = 0.003$) and video ($p = 0.065$) interpretation. The d_a measure suggest that the video interpretation aided four-workers more than the five-workers (21% improvement in four-workers versus 6% improvement in 5-workers) (Table 2). Interestingly, the top 10 KWs, ranked as described above, were comparable to a radiologist in completing this task (Fig. 8).

3.4. Performance by detection difficulty

The detection-level AUC’s for detections stratified by difficulty are shown in Tables 2 and 4 with the corresponding ROC curves in Fig. 9. CAD SVM performance is shown in Table 5. For easy detections, there is little difference between the AUC and d_a for single
image and video interpretation. There is an improvement in video performance over single-image performance for moderate detections. KWs outperform CAD on both easy and moderate detections ($p < 0.001$ for each interpretation style). For difficult detections, the difference between video and single-image performance is larger and significant. However, no improvement over CAD was noted for these difficult detections ($p = 0.19$ and 0.98 for single image and video interpretation respectively). The trend in d_a reflects the AUC trend, showing a growing difference between presentation styles with increasing difficulty. Again, radiologist performance shows a decrease in both sensitivity and specificity with increased detection difficulty. This is consistent with the lower KW ROC curves observed with increasing detection difficulty.

3.5. Timing information

The average video interpretation times for each detection, stratified by difficulty, are shown in Fig. 10. Easy, moderate, and difficult detections took 17.61 (±7.86), 19.38 (±7.31), and 20.36 (±7.50) s to interpret respectively. Increasing difficulty correlated with an increase in interpretation time. There was a significant difference ($p < 0.01$) between the interpretation time for easy and difficult detections. We noted a similar pattern for single image interpretation times, but there was only a small difference in times among the difficulties. Easy, moderate, and difficult detections took 3.60 (±1.90), 3.65 (±1.72), 3.87 (±1.90) s to interpret respectively. None of these differences were significant ($p > 0.5$). We noted that specificity tended to decrease as KW interpretation time increased as seen in Fig. 11. The R^2 values for the single image and video specificity with respect to interpretation time were 0.95 and 0.93 respectively. We noted no such trend with sensitivity. Similar trends were noted in the radiologist's performance. The radiologist's average total work times (time from accepting HIT to submitting HIT) for easy, moderate, and difficult detections were 23.5 (±28.0), 33.3 (±22.8), and 47.6 (±23.0) s respectively. There was a significant difference between each of these groups ($p < 0.01$).

3.6. Comparison of trials

We found 183 detections, including 31 true positives and 152 false positives, in the current study that shared a volume overlap with a detection used in our original experiment. The corresponding ROC curves and radiologist's operating points are shown in Fig. 12. The AUCs from our original experiment, current experiment, and those obtained with 5-workers are shown in Table 2. The AUCs from our original experiment, current experiment, and those obtained with 5-workers are shown in Table 2. The AUCs from our original experiment, current experiment, and those obtained with 5-workers are shown in Table 2.
ment using a single image, and current experiment using a video were 0.834 (±0.047), 0.909 (±0.036), and 0.947 (±0.029), respectively. We noted a significant increase in AUC in single image interpretation from our original experiment to the current experiment \((p = 0.0147)\). There was also a significant increase in AUC from single image to video interpretation in the current experiment \((p = 0.0290)\). The expert radiologist showed an increase in sensitivity and specificity between the original experiment and the current single image interpretation and between the current single image interpretation and the video interpretation. This trend is consistent with the changes in KWs ROC observed across the two studies.

3.7. KW change over time

The ROC curves for the first half of HITs compared to the second half is shown in Fig. 13 with the corresponding AUC values in Table 6. We also show the average interpretation times for the halves in Table 6. We only considered the 29 workers who completed more than 100 HITs. We found significant differences between single image and video interpretation in each half \((p = 0.011 \text{ and } 0.001 \text{ respectively})\). However, we found no significant difference between performance on videos in the second half and single images in the first half \((p = 0.260)\). We also noted a decrease in average interpretation time from the first half to the second half; however, these differences were not significant. The detectability index was consistent for video interpretation, but it fell 12% from the first half to the second half for single image interpretation.

3.8. Estimated difficulty

The predictions of model (1) for each detection stratified by the difficulty assigned by an expert can be seen in Fig. 14. We calculated two difficulty estimates \((\beta)\) for each image, one from KW responses when using single images and the other from KW responses when using video. We took the average of those scores to represent image difficulty. We evaluated the model using those average difficulties for a worker with \(x_i = 1\). Thus, the model only

Table 3

AUCs and \(d^*_a\) of KWs stratified by difficulty and qualification score.

<table>
<thead>
<tr>
<th>Difficulty</th>
<th>Worker group</th>
<th>Single image</th>
<th>Video</th>
<th>(p)-value</th>
<th>Single image</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy</td>
<td>4-Worker</td>
<td>0.954 (±0.020)</td>
<td>0.969 (±0.018)</td>
<td>0.059</td>
<td>2.38 (±0.294)</td>
<td>2.65 (±0.368)</td>
</tr>
<tr>
<td></td>
<td>5-Worker</td>
<td>0.976 (±0.016)</td>
<td>0.975 (±0.016)</td>
<td>0.950</td>
<td>2.80 (±0.401)</td>
<td>2.78 (±0.392)</td>
</tr>
<tr>
<td>Moderate</td>
<td>4-Worker</td>
<td>0.813 (±0.056)</td>
<td>0.867 (±0.050)</td>
<td>0.133</td>
<td>1.25 (±0.294)</td>
<td>1.57 (±0.329)</td>
</tr>
<tr>
<td></td>
<td>5-Worker</td>
<td>0.883 (±0.047)</td>
<td>0.929 (±0.038)</td>
<td>0.042</td>
<td>1.68 (±0.338)</td>
<td>2.08 (±0.397)</td>
</tr>
<tr>
<td>Difficult</td>
<td>4-Worker</td>
<td>0.488 (±0.070)</td>
<td>0.616 (±0.072)</td>
<td>0.007</td>
<td>-0.0443 (±0.248)</td>
<td>0.417 (±0.267)</td>
</tr>
<tr>
<td></td>
<td>5-Worker</td>
<td>0.501 (±0.070)</td>
<td>0.582 (±0.072)</td>
<td>0.039</td>
<td>0.00495 (±0.248)</td>
<td>0.293 (±0.261)</td>
</tr>
</tbody>
</table>

\(d^*_a\) is the detectability index, which represents the perceptual signal-to-noise ratio.

* AUC values below 0.5 and negative \(d^*_a\) values are not realistic because they imply performance worse than guessing. The reported estimates likely signify KW performance no worse than random guessing (i.e., AUC = 0.5 and \(d^*_a = 0\)).

Fig. 7. Receiver operating characteristic curves for four-workers and five-workers. Five-workers are those knowledge workers who answered all five questions correctly on a five-question qualification test. Four-workers answered four of the five questions correctly. Five-workers outperformed four-workers on the human intelligence tasks using both single images and videos. AUC values are given in Table 2.

Fig. 8. Receiver operating characteristic operating points of the 10 best KWs and expert radiologist (Rad.). The 10 best workers, on average, saw an increase in sensitivity with a small increase in specificity. This improvement was similar to the improvement seen in an expert radiologist. The “Average” points in this figure represent the average from the 10 best KWs.

Table 4

Radiologist performance statistics.

<table>
<thead>
<tr>
<th>Detection</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single image</td>
<td>Video</td>
</tr>
<tr>
<td>All detections</td>
<td>0.8068</td>
<td>0.8750</td>
</tr>
<tr>
<td>Easy</td>
<td>1.0000</td>
<td>0.9437</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.6957</td>
<td>0.8898</td>
</tr>
<tr>
<td>Difficult</td>
<td>0.5000</td>
<td>0.6364</td>
</tr>
</tbody>
</table>
varied with the difficulty estimates. The means for the model predictions (\(p\) – the probability that the KW will assign the correct label) for easy, moderate, and difficult detections were 0.834 (±0.141), 0.771 (±0.133), and 0.702 (±0.098), respectively. We found a significant difference between each group (\(p<0.01\)). The model predicted that a KW would have a lower chance of assigning a correct label to a difficult detection than assigning a correct label to an easy detection. Given these distributions in Fig. 14, it appears that the model was able to estimate reasonably well the difficulty from KW votes.

4. Discussion

In this paper, we presented results from an observer study utilizing Internet-based distributed human intelligence to measure the effect of training and detection presentation in interpretation of CT colonography CAD. We found that there was a significant improvement in KW performance when a multi-perspective video was used over a single image in detection classification. KWs were able to outperform the classifier in our CAD algorithm for detections rated as easy or moderate. The new image generation technique and training also yielded a significant increase in performance over that seen in our original experiment.

Similar trends in interpretation were noted in both an expert radiologist and the KWs. Both experienced an overall increase in sensitivity with a small difference in specificity when interpreting the video and a decrease in performance with increasing difficulty. Both groups shared a similar opinion on the difficulty of detections, and both took longer to interpret more difficult detections. While there was a range of KW performance observed, the best KWs performed similarly to an expert radiologist. It has been noted in the radiology literature that longer interpretation times are associated with a decrease in specificity (Nodine et al., 2002; Saunders and...
Samei, 2006). We observed the same trend in our current experiment as specificity dropped as interpretation time increased. While we do expect that a radiologist would outperform KWs on a full reading of a CTC dataset, it is nevertheless interesting that the two groups achieved high performance and experienced similar trends in this focused task. Such findings open the possibility of...

![Fig. 11. Knowledge worker sensitivities and specificities as a function of normalized time variance.](image)

Fig. 11. Knowledge worker sensitivities and specificities as a function of normalized time variance. Normalized time variance for a particular worker is the interpretation time normalized by the variance of interpretation time for a particular worker. The error bars show the standard error of the estimate at each point. KW specificity decreases linearly as interpretation time increases.

![Fig. 12. Evaluation of training and image generation.](image)

Fig. 12. Evaluation of training and image generation. We compare results from our current study with results from our original study (Nguyen et al., 2012) for the 183 CAD marks that shared a volume overlap between the studies. The changes in training, image generation, and qualification requirements resulted in an increase in AUC for KWs and increases in sensitivity and specificity for an expert.

![Fig. 13. ROC curves comparing the first half to the second half.](image)

Fig. 13. ROC curves comparing the first half to the second half.

![Fig. 14. Predictions (p) of model (1) stratified by expert-assigned difficulty.](image)

Fig. 14. Predictions (p) of model (1) stratified by expert-assigned difficulty. p is the probability that worker i will correctly assign a label L_{ij} to image j with true label of Z_j, given worker accuracy, x_i, and image difficulty, β_j. For this figure, we fixed $x_i=1$ and used the β_j's estimated from KW responses. The model was able to accurately estimate difficulty information. Detections labeled as “difficult” are estimated to have a lower probability of having a correct KW-assigned label. Easier detections are more likely to be marked correctly by a KW.

![Table 6](image)

Table 6 First half versus second half statistics. The differences in time are not significant.

<table>
<thead>
<tr>
<th></th>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0.876 (±0.025)</td>
<td>0.894 (±0.023)</td>
</tr>
<tr>
<td>d_p</td>
<td>1.64 (±0.17)</td>
<td>1.77 (±0.18)</td>
</tr>
<tr>
<td>Time (s)</td>
<td>4.20 (±2.38)</td>
<td>21.26 (±25.76)</td>
</tr>
</tbody>
</table>

Samei, 2006). We observed the same trend in our current experiment as specificity dropped as interpretation time increased. While we do expect that a radiologist would outperform KWs on a full reading of a CTC dataset, it is nevertheless interesting that the two groups achieved high performance and experienced similar trends in this focused task. Such findings open the possibility of...
using KWS to investigate other finite task based interpretation factors at a fraction of the cost and time of a traditional study involving radiologists. Additionally, KWSs could be used as a platform to investigate various teaching paradigms for physicians in training to see how each paradigm translates to practice.

We used our first experiment as a benchmark to measure the difference in worker selection, training, and image generation. Analyzing the detections with volume overlap between the experiments, there was significant improvement in performance seen from our original experiment to our current experiment. In our first study, we noted that KW performance was consistent, noting no difference in KW AUC between two independent trials. We conclude that the improvement observed in our current study can be ascribed to the changes implemented in our current experiment, notably the new training information, different image capture techniques, more stringent qualification requirements, and the possibility of a monetary reward. More detailed training and more stringent qualification requirements could further increase the performance and reliability of crowdsourcing experiments. However, time considerations must be made before changing requirements. Our current experiment took significantly longer than our first (1 week versus 11 weeks) most likely because of the requisite qualifications and compensation. The MTurk platform requires requesters to compete in order to attract KWSs to their HITs, and higher wages may be the best way to attract a large KW base to quickly complete HITs.

We hypothesized that experience in interpreting CAD would serve as a form of training, and KW performance would improve with the number of detections interpreted. Judging by the decrease in interpretation time from the first half of detections to the second half, it seemed that the KWSs did become more efficient at the task. We also noted that while single image and video interpretation in each half were significantly different, the performance using video in the second half was similar to the performance using single images in the first half. The detections were presented in a random order to KWSs, so these changes probably reflect KW characteristics more than detection characteristics. These trends suggest that KWSs may have changed their decision criteria as they completed more assignments. With an evolved definition of a polyp, the KWSs may have only identified certain types of polyps in later HITS. While we tried to encourage consistently high performance by offering a $5 reward for the best KWSs, this bonus and the $0.01 HIT compensation apparently were not sufficient to keep KWSs operating at a high level as they completed increasing numbers of HITs. The results also could be explained by the “laboratory effect,” where performance in a laboratory setting is significantly worse than performance in the clinic (Gur et al., 2008). The KWSs knew that their decisions had no impact on patient care, so they could have relaxed their standards in interpreting the detections in order to maximize their pay. A similar argument can be used to explain the decrease in time. KWSs can make more money if they work faster and pay was not dependent on accuracy. In the clinic, both accuracy and throughput are relevant. Further experiments could investigate alternative strategies to maintain and improve performance in the course of completing HITs, such as randomly introducing training cases in the normal workflow and providing feedback on performance.

In evaluating KWSs, the qualification test scores proved to be a more accurate indicator of performance than number of HITs interpreted. Five-workers significantly outperformed four-workers. Qualification tests may be a better way of evaluating readers than number of cases interpreted. This has potentially important implications as number of cases interpreted is frequently, and perhaps erroneously, used as a surrogate measure of expertise in many clinical publications.

Our current study demonstrates the sophistication that a crowdsourced experiment can achieve. The specific goal of this experiment was to investigate factors that may influence diagnostic accuracy in order to improve the design of CAD systems and improve CTC training. From this experiment, we can quickly gather data to evaluate different interpretation paradigms and identify areas for improvement. These experiments were both more practical and much less costly to conduct compared to observer studies utilizing radiologists. We hypothesize that data collected from crowdsourcing experiments will be useful in determining how best to refine and improve CAD algorithms as well as improving physician training by identifying ambiguous features that lead to incorrect interpretation. With developments in processing crowdsourced data, even more sophisticated measures can be made. We envision such data being incorporated in new CAD systems that fuse machine intelligence with human intelligence (Wang et al., 2011). Novel features could be extracted from the human perception of polyp candidates. Ensemble CAD systems could be developed in which classifiers separately handle detections grouped by perceived difficulty, as features that prove effective on easy detections may degrade performance on more difficult detections. Additionally, crowdsourcing could be used to evaluate datasets used by various CAD systems to allow for a more direct comparison of their performance.

While these results are interesting, it is important to realize the limitations in our experiment. The results were obtained from untrained observers removed from the clinic. It is encouraging that the changes we observed among our KW observers followed the trends of an expert radiologist who completed the experiment; however, we must establish a more substantial connection between trained radiologists and the KWSs who complete our studies. We only used a single radiologist in this study to complete HITs and assign difficulty scores. Please note that our expert first encountered the images when completing the HITs. The radiologist completed the same HITs as the KWSs. After completing each HIT, the ground truth of the detection was revealed, and we asked the radiologist to categorize the detection and assign a difficulty score at that time. Further, we only asked KWSs to interpret detections identified by our CAD system. We tried to simply the task as much as possible, omitting some potentially important information to KW. For example, we chose not to describe the problem of residual stool – a type of false positive that causes much difficulty in practice. Despite these limitations, it is interesting that the KWSs were largely able to complete this task, and the results point to the variety of data that can be collected by conducting a crowdsourced observer performance studies.

In summary, we have shown using distributed human intelligence that qualification tests, improved training and image rendering, the addition of video to static 2D and 3D images and the offer of a reward may lead to improved perception and classification of CTC CAD marks. KWSs outperformed a trained CAD classifier for easy and moderate polyp candidates. KWSs’ performance compared favorably to that of an expert radiologist. Estimated CAD Mark difficulty computed from KW scores using an expectation maximization technique correlated well with perceived difficulty assigned by an expert. Changes in individual KWSs’ performance over the course of the experiment and as a function of time-to-decision mimicked results published in the literature for the performance of expert observers. Our results indicate that CAD observer experiments conducted using distributed human intelligence may inform changes in data presentation and training that lead to improved performance of radiologists using CAD in the clinical setting, ultimately leading to increased performance of CT colonography.
Acknowledgments

The intramural research programs of the National Institutes of Health, Clinical Center, and the US Food and Drug Administration supported this work. We thank Perry J. Pickhardt, M.D., J. Richard Choi, ScD, MD and William Schindler, DO, for supplying CTC data. The mention of commercial entities, or commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such entities or products by the Department of Health and Human Services.

References

